(P,Q)-OUTER GENERALIZED INVERSE OF BLOCK
MATRICES IN BANACH ALGEBRAS

MILICA Z. KOLUNDZIJA!

ABSTRACT. We investigate additive results for (p, ¢)-outer generalized inverse
of elements in Banach algebra, along with the representation of this inverse in
a block matrix in the Banachiewicz—Schur form.

Additionally, we investigate the (p, ¢)-pseudospectrum and (p, ¢)-condition spec-

trum of a block matrix x = g 2 in a Banach algebra.

1. INTRODUCTION

Let A be the complex unital Banach algebra with unit 1. The sets of all idem-
potents and invertible elements of A will be denoted by A® and A1, respectively.

An element a € A is outer generalized invertible, if there exists some b € A
satisfying b = bab. Such b is called the outer generalized inverse of a. In this
case ba and 1 — ab are idempotents corresponding to a and b. The set of all outer
generalized invertible elements of A will be denoted with A

Djordjevi¢ and Wei introduced outer generalized inverses with prescribed idem-
potents in [3]:

Definition 1.1. [3] Let a € A and p,q € A°*. An element b € A satisfying
bab = b,ba = p,1 — ab = q,

will be called a (p, g)-outer generalized inverse of a, written a,(fg =b.

The uniqueness of al(fg is provided in the following theorem.

Theorem 1.2. [3] Let a € A and p,q € A*. Then the following statements are
equivalent:
(1) al(fg exists;
(2) (1—q)a=(1—q)ap, and there exists some b € A such that pb =b,bqg =0
and ab=1—q.

. 2 . L, .
Moreover, if aég, exists, then it is unique.

The set of all outer generalized invertible elements of A with prescribed idem-
potents p, g € A* will be denoted with .A,(fg.
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C D
C € C*" and D € C™**. If A is invertible, then the Schur complement of A in
M is defined as

Let M be a 2 x 2 block matrix M = [ A B }, where A € C™*" B € C™*F,

S=D-CA'B.
If M is invertible, then S is invertible, too, and M can be decomposed as
M= I, O A0 I, A™'B
| CATY I 0 S 0 I; ’
where [; is the identity matrix of order ¢. In this case, the inverse of M can be
written as

o - [In —ATB)[AT 0 I 0
=10 0 S || —cAt
Al 4 A'BGICATT AT BS! (1.1)
B —S-1CA! St }

Result (1.1) is well known as the Banachiewicz—Schur form of M, and it has
been used in dealing with inverses of block matrices.

Analogously, we can represent an element of Banach algebra in a block matrix
form as follows.
Let u € A be an idempotent. Then we can represent element a € A as

a4 — @11 A2 :
Q21 Q2 |,
where a1 = uau, ajo = ua(l —u), ag; = (1 — w)au, azg = (1 —u)a(l — u).

a b
Letx:{c d

the Schur complemgnt s=d—ca'b e ((1—u)A(l —u))"!, then the inverse of
x has the Banachiewicz—Schur form

1 [ al+atbslea™t —atbs!

€ A relative to the idempotent v € A. If a € (uAu)~! and

—stea™! st
If a € (uwAu) is not invertible but has the outer generalized inverse with pre-
scribed idempotents p1,q; € (uAu)®, we can observe the generalized Schur com-
plement s = d — cap, ¢, .

Accordingly, we investigate equivalent conditions under which xz(fg has the gen-

eralized Banachiewicz—Schur form in a Banach algebra.

We use the following auxiliary results.

Lemma 1.3. Let p,q be idempotents in a Banach algebra A. The following
stataments are equivalent:

(i) p+q€ A,

(if) pg = qp = 0.
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Proof. (i) = (ii): Suppose p + q € A*. We have
(P+9)?*=p+q=pg+ap=0=pg=—qp.
Since the following holds
pq = p*q® = p(pg)q = p(—ap)g = —pa(pg) = pagp = pap = —ppq = —p4,

we obtain pqg = 0. The analogous proof holds for gp = 0.

(17) = (i): Let p,q € A*® such that pg = gp = 0. Then

(p+a?=p+pi+ap+¢*=p+g,

sop+qe€ A°. O

If u € A°®, then the product of arbitrary elements from algebra u.4u and (1 —
u)A(l — u) is equal to 0, i.e. for all a € uAu and for all b € (1 —u)A(1 — u), we

have ab = 0.
Now, as a corollary of Lemma 1.3, we state the following result.

Lemma 1.4. Let v € A*. If p1 € (uAu)® and ps € ((1 — uw)A(l — u))*, then
p=p1+p2 €A is an idempotent.

2. (p,q)-OUTER GENERALIZED INVERSE

The first result gives the additive properties of the (p,q)-outer generalized
inverse.

Theorem 2.1. Let p,q € A® and a,b € A,(fg. If
aPb+bPa+1=0,  ab®)+bal?) +1=0, (2.1)

p.q p,q p.q

then a+b € Affg and
2 2)
(a+b)§)73 = az(g +b(

Proof. Using the fact that a,b € A,(fg, Theorem 1.2 and conditions (2.1), we have

(2) (2)
( q+bpq)(2 +b)2< q+bpq)— o)
= I(D,q"‘Pb() ()bapq+a1(93(1 q) + b ( )"’bpqab +papq+bpq
:a1()21+bpq+ quaz(fg"‘ 1(Jq+bpq+b (3 b( ;2 +b§q
:a,(,?;+b,(,3+apq(ba§,23+ )+bpq(1+ab ) ()+b()

)+ by + ab(— abé23>+bp3< bafé)ﬂé) bp,z

2
=a
2 2 2 2
= a%é% + b%é% - pb( ) — Pa 1(93 +a p,q + bp,q
= apg + bpg,
@@+ (a+b) = alla+aDb+bPa+ bR

= p+pal b+pb(2)a+p
= p+palb+bPa+1)
b,
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and also

(a+b)(a

Thus, we proved (a + b)ﬂ = al(fg, +
O

The following theorem gives us equivalent conditions under which xﬁ; has the
generalized Banachiewicz—Schur form in a Banach algebra.

Theorem 2.2. Let v = [ CCL Z } € A relative to the idempotent u € A, p1,q1 €

(uwAw)® and py, qo € ((1—11,)./4(1—111)). and letp = p1+ps € A andqg = q1+¢ € A.
Leta € (uflu)l(fl)g1 and let s = d—cag),qlb € ((1—u).,4(1—u)),(aq2 be the generalized
Schur complement of a in x. Then the following statements are equivalent:

(i) z € A,(f; and $;(3; =r, where

(2) (2) (2) (2) (2) (2)
r= Qp1,q1 + Qp1,q1 b5p27Q2cap17q1 —0p1,q1 bSPQ,tD
_ @ o <@
p2,q2 P1,91 P2,92

.. 2 2 2 2
(11) ca;gl),lha = 551(72)4120 and aaél),thb = bséJ»st-

Proof. By Lemma 1.4 we obtain that p and ¢ are idempotents.

Using the assumptions a € (wAu)ly and s € (1 — u).A(1 — u))j(g?,qz,, we verify
rer =r.

The equation rx = p is equivalent to the equations:

2 . 2 2 @2 p—_ 4,2 (2)
sz,qzc - sz,qzcapl,qla and aplﬂlb - apl,rh bspz,qas'

On the other hand, 1 — xr = ¢ is equivalent to:

2 _ 4,2 2) (2) _ 4.2 (2)
bSPQ,QQ - aapl»Ql bspwp and Capl#h - Sspzalbcapl,qr

Therefore, x has (p, ¢)-outer generalized inverse if and only if

s@ o=@ @ 4 4@ p= 2 gD o

P2,q2 P2,92 7 P1,91 7 P1,q1 P1,91 7" P2,927)
2 _ ,,2 (2) (2) _— (2 (2)
bSP27CI2 - aaplﬂl bspz,th’ Caphql - 88?2#20@[)1#1’

which are equivalent to

(2) — <2 2 o — 7,3
Camma - 8‘919271126’ bSp27q2S - aap17Q1b'

As a corollary, we formulate the following result.
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a b

d
(wAw)® and pa, go € (1—u)A(1—u))® andletp = p1+p2 € Aandqg = q1+q2 € A.
Let a € (uAw)y and let s = d — callqb € (1 —w)A(l = u))g,. The following
stataments are equivalent:

. 2 2 2

(1) Ca]((ﬂglim = aél%é(l;)b = bs;z)m e )Séz)ﬂzc = O)
(ii) C?%lﬂl G(T Sspz,q(zg (2)aap1,(hb = b Spa,q2 S,
p1,q1 b3p2 @2 = SpargaCapiqr = 0.

If one of these conditions is satisfied, then x € Aﬂ and

(2) (2) (2) (2) (2)
$(2) — Qp1,q1 + Qp1,q1 b5p27Q2cap1,q1 —0pi,q b3p27q2
P _8(2) ca( ) 8(2)
p2,92 “Up1,q1 2,92

Corollary 2.3. Let x = € A relative to the idempotent u € A, p1,q1 €

3. (p,q)-CONDITION SPECTRUM AND (p, q)-PSEUDOSPECTRUM

The pseudospectrum and the condition spectrum were studied in [1], [7] and
[9]-

Definition 3.1. [9] (Pseudospectrum)
Let € > 0. The e-pseudospectrum of an element a € A is defined as

Ac(a) = {z € C | a— z is not invertible or |[(a — z)7'[| > €} .

Definition 3.2. [1] (Condition spectrum)

Let 0 < € < 1. The e-condition spectrum of an element a € A is defined as
1

oe(a) = {z € C | a — z is not invertible or ||(a — 2)7!|| - [|la — 2|| > —} .
€
We generalizethe pseudospectrum and the condition spectrum, and we formu-
late (p, ¢)-pseudospectrum and (p, ¢)-condition spectrum as follows:

Definition 3.3. ((p, ¢)-pseudospectrum)
Let € > 0. The (p, ) — € pseudospectrum of an element a € A is defined as

Ae(a):{ze@\a z¢ A orH( )](f{),Hze}.

Definition 3.4. ((p, ¢)-condition spectrum)
Let 0 < e < 1. The (p,q) — e-condition spectrum of an element a € A is defined
as

1
o) = {z € Cla=z ¢ A% or lla= 2 Ja- 2l > 1},

Notice that the uniqueness of a;(fg allows us to consider the (p, ¢)-pseudospectrum
and (p, ¢)-condition spectrum.

0 b
can be define as

If v = [ a 0 } € A relative to the idempotent u € A, then the norm of z

||[| = max{||al], [[6]]}-
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Now, we state an auxiliary result.

a 0

Lemma 3.5. Let x = { 0 b } € A relative to the idempotent u € A, p1,q1 €

(wAw)* and ps, gz € (1-u)A(T~u))* and let p = p+py € A and g = qu+g2 € A
Then x € A](fg if and only if a € (uflu)](fl),q1 and b € ((1 —u)A(l — u))l(;z),qg.

Ifx € AIS?;, then
2
CE(Q) — azgh),(h 20
0 b

Proof. By Lemma 1.4 we obtain that p and ¢ are idempotents.
If a € (u.,élu)z(fl),q1 and b € ((1 —u)A(l — u))g),(p, by Theorem 2.2, we obtain
S Al(fg.

Ifx e A}(fg, there exists the element y = [ Ci; bc } € A such that y = x,(,?g. The
1 u

equation yxy = y is equivalent to equations:
ajaa; + cbd = aq
ajac + cbby = ¢
daay + bibd = d
dac + bbby = by.

Also, yx = p is equivalent to:
a1a =nmnm
chb=0
da =0
blb = P2,

and 1 — xy = ¢ is equivalent to:
u—aa = q
ac =10
bd =0
(1 —u)—bby = qo.

The equations ajac + c¢bby = ¢, ¢b = 0 and ac = 0 imply ¢ = 0. Analogously,
daay, + b1bd = d, da = 0 and bd = 0 imply d = 0. Now, we have the equations:

ai1aap = aq

a1 =P

U — aay = qi,
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and

blbbl - bl
b1b = po
(I —u) —bby = go

proving ai = ay g, and by = byZly,.
Furthermore, if z € AY), then

22 az(v?),ql 0
P 0 b(2)
D2,q2 u
O

As a corollary, we have the following result for the invertibility of an element

T = [ 8 2 } € A relative to the idempotent u € A .

a 0
0 b

r e A7 if and only if a € (uAug_l and b € ((1 —u)A(l —u))~t

If v € A7, then
-1
-1 _ a 0

Therefore, for the spectrum of an element z = [ 8 2 } € A, the following
holds

Lemma 3.6. Let x = { } € A relative to the idempotent uw € A. Then

u

o(x) =o(a)Uao(b).

We investigate whether the similar property holds for the pseudospectrum and
condition spectrum. We formulate the following results.

a 0

0 b,
P, @1 € (WAW)® and ps, g2 € ((1 — w)A(l —u))® and let p = p1 + ps € A and
qg=q+q € A. Then

A(P,Q)—e(x) = A(p17q1)—6<a) U A(m,qz)—e(b)'
Proof. Let z € Ay g)—c(x). Then x — 2 ¢ AR or ||(z — )| > e.

a— zu 0 () .
0 b—2(1—u) | ¢ Ay, by Lemma 3.5, we obtain that

a—z2u ¢ (wAWDy or b— 2(1 —u) ¢ (1 — w)A(l — u)2y,. It implies = €
Aprgr)-c(@) or 2 € Mgy g2)-e(b), 50 2 € Apy 1) (@) U Ay g2) (D).

Theorem 3.7. Let x = € A relative to the idempotent u € A, € > 0,

Ifx—2 =
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Ifx—z= [ a—ozu b—z(ol—u) 1 EA%, we have
(2)
@ _ | (a=2u)pla 0
0= 2o [ 0 (b a1 — )
and
1z = 2)gll = max{{|(a — zu)5g, 11 [1(b = 2(1 — )2, 1} > €.

By Lemma 3.5, we conclude that

and b— z(1 —u) € (1 —u)A(l —u))?

a—zu € (uAu)? P2.q2°

P1,q1

The assumption max{||(a — zu)g)’q1 I, [|(b—=z(1 —u)),(,z),qzﬂ} > ¢ implies that either
||(a—zu)1(,21),q1|| > eor ||(b—z(1—u))§,22),q2|| > e holds. It follows that z € A, g,)—c(a)
Or 2 € Npaga)—e(b), 50 2 € Ay g1)—e(@) U Ay o) (0).

We have proved A g)—c(%) C Ay g1)—e(@) U A(py g0)—e(D)-

Now, let 2 € Ay g1)—c(a) U Ay g0)—e(D). It follows

a—zud (uAw)?, or||(a —2u)? || > €

P1,91 P1,91 —

or

b—2(1—u) ¢ (1 — u)A(L — u))2y, or [|(b— 2(1 — )P, || > .

p2,92 P2,92
If either a — zu ¢ (uAu)Z(;Ql),q1 orb—z(1—wu) ¢ ((1—u)Al - u)),()?,qQ, by Lemma
3.5, it follows x — z ¢ AR So, z € Apg)—e().
On the other hand, if

and b— z(1 —u) € (1 —u)A(l —u))?

a—zu € (uAu)? P2,q2°

P1,91

it holds either ||(a — zu)pl,qu > eor ||(b—2z(1-— u))g),qQH > €. Therefore,
1z = 2)pall = max{||(@ — zu)jt ], [|(b = 2(1 = u))ja|[} = € This proves that
z € A(p,q)76<37)-

The inclusion A, ¢)-(@) U Ay g0)—e(b) C Agpg)—(z) has been proved. O
Theorem 3.8. Let x = [ 8 2 } € A relative to the idempotent u € A, 0 < € <

L piq1 € (wAw)® and pa,qo € ((ul —u)A(l —w))* and let p = p1 +p2 € A and
qg=q+q € A. Then

U(plyfh)*f(a) U U(pz,qz)fe(b) - 0(p,q)fe<x)-

Proof. Let 2 € 0y, g1)—(@) U 0(py,45)—e(b). These imply

a—zu ¢ (u.,élu)p1 o OT H(a—zu)g)’qu Nla — zul| > %
or
1
b—2(1—u) ¢ (1—u)Al—u)P, or [[(b—z(1—u) Il [Ib—2(1—u)|| > -

6
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If either a — zu ¢ (uAu)$q, or b— z(1—u) ¢ (1 — w)A(l — u))'2y,, by Lemma
3.5, it follows z — z ¢ A%). Then, we have z € O (p,q)—e(T).
On the other hand, if

a—zu € (uAu)?
it holds either

and b— z(1 —u) € (1 —u)A(l —u))?

P1,91 Pp2,92?

1 1
la = 20) @y - lla — =] 2 or [1(b — (1~ u) @1 16— =1~ w)] > -
1
Without loss of generality, assume that ||(a — zu)p%,qu - |la = zu|| > = holds.
€
Therefore,

i@ = 2)pallle — 2 = .
= max{]|(a = zu)iZl, 10 = 2(1 = )1} - mace{la — 2l [Jb = (1 = )]}

2
> [|(a — 20| - lla — zul] > .

This proves that z € o, q)—c().
0J

The next example shows that the converse inclusion is not true in the previous
theorem.

1
Example 3.9. Let 0 < ¢ < 1, z € € and u € A® such that ||u|| < — and

e

1 @+ 2)u 0 .
11 — ul| < NG Let x = 0 (e +2)(1 —u) € A relative to the
idempotent u € A. Then
2 € 0(1,0)-(T), but 2 ¢ (0(u0)—c((€° + 2)u) U0 —e((e+ 2)(1 — u))).

Proof. For idempotents u € A and 1 —u € A, we have ||u|| > 1 and ||1 —ul|| > 1.
There exists the inverse

1

—u 0
(=205 =| ¢

0 —(1-

(1w |
as well as inverses
1

(€ 4+ 2)u = zu)fy = (Cu)y = S

and
(4 2)(1 =) — 21— w)Pop = (el — ) Prg = ~(1 — ).

Now, we have

Wm—@%mm—fuz
—mwﬂQuHH%l—WM»mwﬂkM|Hﬂ—um}

1

1
= II—QUII Ale@ =)l = |5 |- lel = =,
€ € €
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but also ) )
2

[I(u)ipll - lleull = Nl zull - |l = [Jul* < =
and

) 1 1

(e = u)2 ol - Nl = )] = =@ =)l fle(t = wl] = [T = ul]* < =

Therefore,

2 € 0(1,0)—c(), but z ¢ (U(U,o)—e((€2 + 2)u) U o(1—y0)—c((e + 2)(1 —u))).
OJ

If # € A is invertible, p =1 and ¢ = 0, then 27! = x%.

As corollaries of Theorem 3.7 and Theorem 3.8, we formulate the following

results for the pseudospectrum and the condition spectrum.

0 b

Theorem 3.10. Let x = { a 0 } € A relative to the idempotent u € A and
€ >0. Then !

Theorem 3.11. Let x = {

Ac(z) = Ac(a) U A (D).

a 0

0 b } € A relative to the idempotent u € A and

0<e< 1. Then

10

oc(a) Uac(b) C o(z).
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